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1 Overview of dimensionality

In the classical setup of statistics, we have N data points {u1, . . . , uN} ⊆ Rd. Here,
the parameter N represents the number of samples we draw our data from, while d
represents the ambient dimension of the model, i.e. how many different features of
the system we are measuring.

Example 1.1. We can poll N = 1000 UCLA students and ask them about their
GPA and how much sleep they tend to get a night. Here, the number of features of
the system is d = 2: GPA and hours of sleep.

In this regime, classical probability and statistics tell us that if we take enough
samples (i.e. N →∞), our statistical estimates become precise.

Theorem 1.1 (Strong Law of Large Numbers). Let X1, X2, . . . , be i.i.d. random
variables with E[|X1|] <∞. Then

1

N

N∑
i=1

Xi
a.s.−−→ E[X1]

as N →∞.

Similarly, the Central Limit Theorem tells us what the distribution of 1
N

∑N
i=1Xi

looks like as N →∞.
More recent work in statistics has centered around a different situation: What if

the number of samples N is much smaller than the number of features d?
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Example 1.2. Suppose we are a biometrics company, and we want to do statistical
analysis of the human genome. We receive the DNA of N = 100 people, but have
d = 21000 genes.

In high-dimensional situations, we may not be able to use standard limit theo-
rems. Here are two ways we can adapt to the issue:

1. Derive quantitative results which give explicit dependence on d and N .

2. Reduce the dimension without too much loss of information.

The Johnson-Lindenstrauss embedding achieves #2 using tools in the vein of #1.
We will give basic probabilistic bounds in the form of concentration inequalities
and use them to prove this theorem.

2 Markov’s inequality and the Chernoff bound

Suppose you know the average value of a nonnegative random variable X ≥ 0. If
E[X] = 5, for example, then the P(X ≥ 100) has to be small; otherwise, these events
would weight the expectation up too high, exceeding E[X]. Markov’s inequality says
this in a quantitative form:

Theorem 2.1 (Markov’s inequality). Let X ≥ 0 be a nonnegative random variable.
Then for any a > 0,

P(X ≥ a) ≤ E[X]

a
.

Test your intuition with this by making a bigger. You get a tighter bound on the
probability of the tail of the distribution.

Proof. Since X ≥ 0,

E[X] ≥ E[X1{X≥a}]

≥ E[a1{X≥a}]

= a((((((((0 · P(X < a) + 1 · P(X ≥ a)).

Dividing both sides by a gives the inequality.

Markov’s inequality is not usually very tight, which you can expect by the fact
that it only uses information given by the average value E[X]. Here is a trick that
often gives a tighter bound.
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Theorem 2.2 (Chernoff bound). Let X be a random variable and a > 0. Then

P(X ≥ a) ≤ inf
t>0

e−at E[etX ].

Remark 2.1. The quantity E[etX ] is the moment generating function of X.
Using the Maclaurin series for ex, you can think of this as

E[etX ] =
∞∑
k=0

E[Xk]
tk

k!
,

which contains information about E[X], Var(X), and more.

Remark 2.2. Also notice that the requirement X ≥ 0 is gone. This is another
strength of the Chernoff bound.

Proof. For any t > 0,

P(X ≥ a) = P(tX ≥ ta)

= P(etX ≥ eta)

Using Markov’s inequality,

≤ e−ta E[etX ].

This bound holds for every t > 0, so we can take an inf on the right hand side to get
the result.

Let’s see an example of this bound in action:

Example 2.1. Let X ∼ N(µ, σ2) be a normally distributed random variable with
mean µ and variance σ2. We can compute E[et(X−µ)] = eσ

2t2/2. Plugging this into
the Chernoff bound gives

P(X − µ ≥ a) ≤ inf
t>0

exp

(
σ2t2

2
− ta

)
Using the fact that a parabola at2 + bt+ c is minimized at t = −b/(2a),

= exp

(
− a2

2σ2

)
We get the same thing if we apply the argument to −X, so adding the two cases
together gives

P(|X − µ| ≥ a) ≤ 2 exp

(
− a2

2σ2

)
.
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3 Connecting the Chernoff bound to dimension-

ality

To see how the Chernoff bound relates to our original considerations, apply the
previous example to an average of i.i.d. N(µ, σ) random variables: X = 1

N

∑N
i=1Xi.

X is a normally distributed random variable with mean µ and variance σ2/N , so the
Chernoff bound gives

Theorem 3.1 (Hoeffding’s inequality for Gaussians).

P(|X − µ| ≥ a) ≤ 2 exp

(
−Na

2

2σ2

)
.

This type of inequality is called a concentration inequality. It tells us that
the average X probabilistically concentrates around its mean at an exponential rate
in N .

Using this same tool, we can gain information about high-dimensional data:

Lemma 3.1 (Bernstein’s inequality for χ2-RVs). Let Z1, Z2, . . . , Zm be i.i.d. N(0, 1)
random variables. Then for 0 < δ < 1,

P

(∣∣∣∣∣ 1

m

m∑
i=1

Z2
i − 1

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
−mδ

2

8

)
.

This says that Gaussian random vectors tend to concentrate around the sphere
of radius

√
m.

Proof. The proof is the same as Hoeffding’s inequality. We apply the Chernoff bound
after calculating the moment generating function of 1

m

∑m
i=1 Z

2
i .

4 The Johnson-Lindenstrauss embedding

We are now able to prove the Johnson-Lindenstrauss theorem, which uses the above
concentration inequalities

Theorem 4.1 (Johnson-Lindenstrauss). Consider a set of points {u1, . . . , uN} ⊆ Rd,
and let ε, δ ∈ (0, 1). For any m such that

m ≥ 16

δ2
log

(
N√
ε

)
,
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if we define the random matrix

X :=
1√
m
Z =

1√
m

— Z1 —
...

— Zm —

 ,
where Z is an m× d matrix with i.i.d. N(0, 1) entries, then

(1− δ)‖ui − uj‖22 ≤ ‖Xui −Xuj‖22 ≤ (1 + δ)‖ui − uj‖22 ∀i 6= j

with probability ≥ 1− ε.

In other words, given any distance distortion tolerance δ and probability tolerance
ε, we can reduce the dimension of the data to ∼ logN .

Remark 4.1. Remarkably, the reduced dimension m only depends on the number
of samples N ; there is no dependence on the original dimension d. Moreover, it has
the form of logN , which grows even slower than N itself!

Remark 4.2. Not only does the theorem prove the existence of a linear map Rd →
Rm embedding the data into a low-dimensional space, it also shows that “most”
random linear maps will satisfy this property.

Proof. Fix i 6= j, and let w = ui − uj. First observe that the distortion bound is
equivalent to ∣∣∣∣‖Xw‖22‖w‖22

− 1

∣∣∣∣ ≤ δ.

Let Y = ‖Xw‖22/‖w‖22. Then

Y =

∥∥∥∥X w

‖w‖2

∥∥∥∥2
2

=
1

m

m∑
i=1

〈
Zi,

w

‖w‖2

〉2

︸ ︷︷ ︸
∼[N(0,1)]2

,

so mY ∼ χ2(m) is a chi-squared random variable. Using our concentration inequality
lemma,

P(|Y − 1| > δ) ≤ 2 exp

(
−mδ

2

8

)
≤ 2

ε

N2
.

Now, to treat all the pairs (i, j) together, we use a union bound:

P
(∣∣∣∣‖X(ui − uj)‖22
‖ui − uj‖22

− 1

∣∣∣∣ > δ for some i 6= j

)
≤
∑
i 6=j

P
(∣∣∣∣‖X(ui − uj)‖22
‖ui − uj‖22

− 1

∣∣∣∣ > δ

)
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≤
(
N

2

)
2
ε

N2

≤ ε.

Remark 4.3. We do not need to use Gaussian random variables in this theorem.
All these concentration inequalities can be applied more generally to sub-Gaussian
random variables, which are any random variables where the tails of the distribution
decay at least as fast as the Gaussian (e.g. bounded random variables). We can even
apply the embedding with random variables which take the values ±1, each with
probability 1/2 (this gives different constants for m).
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